[image: image6.jpg]
SalesLogix v6.1/v6.2 Web Services Toolkit

Version 1

January 2005

[image: image7.jpg]This toolkit is distributed under an Open Source license found on the next page.

The basic idea behind open source is very simple: When programmers can read, redistribute, and modify the source code for a piece of software, the software evolves. People improve it, people adapt it, people fix bugs. For more information, see http://www.OpenSource.org.

[image: image8.jpg]

SalesLogix Web Services Toolkit

COPYRIGHT

© 1996-2005, Best Software, Inc., 8800 N. Gainey Center Drive, Scottsdale, Arizona 85258, USA.

All rights reserved. This product and related documentation are protected by copyright and are distributed under licenses restricting their use, copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any means without prior written authorization of Best Software and its licensors, if any.

TRADEMARKS

SalesLogix is a registered trademark of Best Software Inc.. Other product names may be trademarks or registered trademarks of their respective companies and are hereby acknowledged.

DISCLAIMER

Best Software has thoroughly reviewed this manual. All statements, technical information, and recommendations in this manual and in any guides or related documents are believed reliable, but the accuracy and completeness thereof are not guaranteed or warranted, and they are not intended to be, nor should they be understood to be, representations or warranties concerning the products described. Best Software assumes no responsibility or liability for errors or inaccuracies with respect to this publication or usage of information. Further, Best Software reserves the right to make changes to the information described in this manual at any time without notice and without obligation to notify any person of such changes.

TECHNICAL SUPPORT

Technical Support is available to customers with support contracts directly from Best Software and to Certified Business Partners. Calls are answered during business hours, Monday through Friday, excluding holidays. Current contact information is available on the SalesLogix Web site. Customers with a valid technical support contract and a web access code can request technical support electronically on the SalesLogix SupportOnline Web site.

SalesLogix Web site www.saleslogix.com

SupportOnline Web site http://support.saleslogix.com

OPEN SOURCE

This toolkit may be used and distributed according to the following Open Source license agreement.

Copyright (c) 2005, Best Software, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met::

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of SalesLogix, Best Software, Sage Group plc, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SPECIAL THANKS

Special thanks to Paul Gallagher with E1 Target Limited and Mike Spragg with e1Business for their assistance and support of this toolkit development effort.

Section 1

Using .NET Web Service with SalesLogix
This document demonstrates how SalesLogix developers can use .NET Web Services as a mechanism to expose an API layer to users without compromising security and allowing many platforms that support SOAP and XML to communicate with the web service.
Pre-Requisites
The following list is what is required to create the web services and what knowledge is expected of the developer
· SLX VB Integration Knowledge for creating VB Code

· SLX v6+

· SLX Data Provider Knowledge

· VS.NET 2003 Installed

· .NET Framework

· IIS Installed to run the web service
Changing Connection Settings to SalesLogix v6.2

Below is the connection settings that should be used if connection to SalesLogix v6.2, all sample code uses SalesLogix v6.1 connection Properties. If there is a RW Password this also must be set with the connection string by adding "RWPass=SLXRWPassword;" at the end

"Provider=SLXOLEDB.1;Persist Security Info=True; " & _

"User ID=" & UserName & ";" & "Password=" & Password & "; " & _

"Initial Catalog=" & SLXConnectionAlias" & _
";Data Source=" & SLXAlias & ";" & _
"Extended Properties=Address=localhost;TYPE=ODBC;PORT=1706;LOG=ON;"
If you are using 6.2 – ensure that any recordsets use the following cursor & lock types are used: -
adoConnection.CursorLocation = ADODB.CursorLocationEnum.adUseClient rs.LockType = ADODB.LockTypeEnum.adLockOptimistic
Otherwise, your SQL may return an empty recordset.

Section 2

Getting Started -

Creating a .NET Web Service Example

In this example with have used VB.NET 2003 to build the web service, and to create a web service application

· Navigate to Start | Programs | Microsoft Visual Studio. NET 2003 | Microsoft Visual Studio .Net 2003
· Select File| New | Project menu command

· In the Project Types pane select Visual Basic Projects.

· In the Templates pane, click ASP.NET Web Service.

· Type http://localhost/SLXWebServicesDemo in the Location field.

· Click OK
To expose a Method As a Web Service, you would

· Navigate to the Service1.asmx file in the Solution Explorer, right-click and select View Code
· Create a new function called SLXLogin, which takes the SLX Login parameters for v6.1 and returns a string with success or failure.

· Implement the method to return the result (see code below for a suggested example)

· Add the <Web Method ()> attribute to the function. This attribute tells .NET to expose the function as a Web Service.
The code uses ADO to make a connection to the database and to use this we need to

· From the menu select Project -> Add Reference
· From the .NET controls select adodb
· On the right side under Solution Explorer you see a references section and if you expand that section you should see a reference to adodb
<WebMethod()> _

Public Function SLXLogin(ByVal SLXServerName As String, _

 ByVal SLXConnectionAlias As String, _

 ByVal UserName As String, _
 ByVal Password As String) As String
Dim ConnectionStr As String, adoConnection As ADODB.Connection
adoConnection = New ADODB.Connection
ConnectionStr ="Provider=SLXNetwork.1; Data Source=" & _

 SLXConnectionAlias & ";User ID=" & UserName & ";" & _

 "Password=" & Password & "; Extended Properties= " & _

 "SLX SERVER=" & SLXServerName &_
 ";Address=localhost;TYPE=ODBC;PORT=1706;"
On Error GoTo ErrRoute
Call adoConnection.Open(ConnectionStr)
adoConnection.CursorLocation = _

ADODB.CursorLocationEnum.adUseClient

SLXLogin = "Login Succeeded for user " & UserName
Exit Function

ErrRoute:

SLXLogin = "Login Failed with error " & Err.Description
End Function
Testing Your .Net Web Service

Perform Initial Testing
· Right-click Service1.asmx in the Solution Explorer and click Set as Start Page

· To compile and run your application press CTRL+F5

· Visual Studio .NET opens a Web page, to test your Web Service without implementing a specific client.

· To view the test page, click the SLXLogin link.

· To invoke the Web Service from the test page, enter a value in the Parameters field and click Invoke.

· Examine the Web Service Description Language(WSDL) file that .NET provides for users of your service. To view the file click the Service Description link on the test page or navigate directly to the WSDL page using the URL: http://localhost/SLXWebServicesDemo/Service1.asmx?wsdl

· Examine the WSDL file. Definitions are provided for SOAP, HTTP GET and HTTP POST protocols to describe how the Web Service can be accessed using different protocols. SOAP is used by client applications to access a Web Service, while the Web browser uses the HTTP GET method when calling the Web Service (as was done in this exercise).

· Close all the Web browser windows invoked by this application.
Perform Testing From A “VB .NET” Client
· To perform calls to the SLXWebServicesDemo Web Service add a client to the current solution. This client uses SOAP to access the Web Service.

· To add a new project to the current solution in Visual Studio .NET, select File | Add Project | New Project menu command

· In the Project Types pane select Visual Basic Projects
· In the Templates List select Windows Application
· Enter “SLXWebServicesClient” in the Name field.

· To create the project click OK
· To identify SLXWebServicesClient as the primary/StartUp project in the solution, in the Solution Explorer, right-click the SLXWebServicesClient project and select Set as StartUp Project.

· To create a reference to the Web Service, select Project | Add Web Reference menu command.

· Add Web Reference Dialogue Box appears.
[image: image1.png]
· Enter the URL of the Web Service you created. The URL is: http://localhost/SLXWebServicesDemo/Service1.asmx?wsdl

· Click Go
· To refer to this web service click Add Reference

· The SLXWebServicesClient project will now have a new folder called Web References. This will contain a localhost node and a few files. These files contain description of the SLXWebServices, including a proxy class, which will allow you to access the service. This proxy class will handle all the low-level SOAP interactions, which occur between your application and the SLXWebService.
Accessing the Web Service

· Open the default form by double-clicking Form1.vb in the Solution Explorer. This opens the form design surface.

· Open Toolbox, to view the Toolbox select View |Toolbox menu command.

· Drag and drop a Button control on to the form from the Toolbox.

· To switch to the event handler function for the Buttonn_Click event double-click Button control.

· Create an instance of your proxy class (localhost.Service1) and call the SLXLogin() function, passing a valid connection argument settings. Display the output of this function call in a MessageBox. The Buttonn_Click() function should now look like:
 Dim ws As New localhost.Service1

 MessageBox.Show(ws.SLXLogin(”LOCALHOST”,”ConnAlias”,”Admin”,””))
· To compile and run your application press CTRL+F5. To test the call from the client to the Web Service click Button1.

· Close the client Run Form.
Section 3

Login to SalesLogix with Web Service

In this section we will expand our Web Service example to login to SalesLogix.
Using Complex Data Types
Adding a New Class to the Web Service Project that will take all the Login Parameters as a single data type
· Select the SLXWebServicesDemo node in the Solution Explorer. To create a new class right-click the SLXWebServicesDemo node and select Add | Add Class menu command
· Enter “ConnectionProperties.vb” in the Name field

· Click Open
· Declare four variables to the class as shown below: all of type strings called SLXServerName, SLXConnectionAlias, UserName, Password.
Public Class ConnectionProperties

 Public SLXServerName As String

 Public SLXConnectionAlias As String

 Public UserName As String

 Public Password As String

End Class
Add a new method that uses the Class, to expose the Method as a Web Service, you would

· Navigate to the Service1.asmx file in the Solution Explorer, right-click and select View Code
· Create a new function called SLXLoginCType, which takes the SLX Login parameters for v6.1 in the new data type and returns a string with success or failure.

· Implement the method to return the result (see code below for a suggested example)

· Add the <Web Method ()> attribute to the function. This attribute tells .NET to expose the function as a Web Service.
<WebMethod()> _

Public Function SLXLoginCType(_

ByVal ConnStr As ConnectionProperties) As String
Dim ConnectionStr As String, adoConnection As ADODB.Connection
adoConnection = New ADODB.Connection
ConnectionStr = "Provider=SLXNetwork.1;" & _

 "Data Source=" & ConnStr.SLXConnectionAlias & _

 ";User ID=" & ConnStr.UserName & ";" & _

 "Password=" & ConnStr.Password & ";" & _

 "Extended Properties=” & _

 "SLX SERVER=" & ConnStr.SLXServerName & _
 ";Address=localhost;TYPE=ODBC;PORT=1706;"
On Error GoTo ErrRoute
Call adoConnection.Open(ConnectionStr)
adoConnection.CursorLocation = _

ADODB.CursorLocationEnum.adUseClient
SLXLoginCType = "Login Succeeded for user " & ConnStr.UserName
Exit Function

ErrRoute:

SLXLoginCType = "Login Failed with error " & Err.Description
End Function
Update the Client to Call the New Method

· In the Solution Explorer, right-click the SLXWebServicesClient project and select Set as StartUp Project
· Expand SLXWebServicesClient | Web References | localhost in the Solution Explorer.

· Right-click the localhost node in the Web References directory and select Update Web Reference. This will update the SLXWebServicesClient application to make use of the SLXWebServices’s new functionality and will update the proxy class to include the new web service function you created (Complexmethod)

· To view the design surface of the form click Form1.vb in Solution Explorer.

· Drag and drop a second Button control on to the form from the Toolbox

· To switch to the event handler function for the Buttonn_Click event double-click the Button control. Enter the following code:
 Dim ConnProperties As New localhost.ConnectionProperties
 Dim ws As New localhost.Service1
 With ConnProperties
.SLXConnectionAlias = "SalesLogix_Eval"
.SLXServerName = "LOCALHOST"
.UserName = "Admin"
.Password = ""
 End With
 MessageBox.Show(ws.SLXLoginCType(ConnProperties))
· To compile and run your application press CTRL+F5. To test the call from the client to the Web Service click Button2.

· Close the Run Form of application.
Section 4

Using a Web Service with Accounts

In this section we will expand our Web Service example to work with SalesLogix Accounts.
Passing Data Using VB .NET Structured Class & Type Arrays
When we need to return an array of items that have some structure to them, like accounts for a given account manager we might return, accountid, name and seccodeid. This could be achieved simply in a standard array, but with web services you have the ability to give the whole array some meaning and if necessary add functions to the class that is created. Here are some simple steps for creating a Class Array.
Add a New Class to the Web Service Project
· Select the SLXWebServicesDemo node in the Solution Explorer. To create a new class right-click the SLXWebServicesDemo node and select Add | Add Class menu command
· Enter “Accounts.vb” in the Name field

· Click Open
· Declare three public variables to the class as shown below: two of type strings called AccountID, AccountName and SECCODEID.
Public Class Accounts
 Public AccountID As String

 Public AccountName As String
 Public SECCODEID As String

End Class
Create a New Method that Returns Array of Objects
· To open the code for Service1.asmx right-click the file and select View Code in Solution Explorer
· Add a new function called SLXGetComplexAccountList which returns an array of Accounts objects as follows:
<WebMethod()> _

Public Function SLXGetComplexAccountList(_
 ByVal ConnectionStr As ConnectionProperties, _
 ByVal AccountManager As String, _
 ByRef LoginStatus As String) As Accounts()

 Dim tAccounts() As Accounts
 If Not pSLXLogin(_

ConnectionStr.SLXServerName,ConnectionStr.SLXConnectionAlias, _
 ConnectionStr.Username, ConnectionStr.Password) Then
 ReDim tAccounts(0)
 tAccounts(0) = New Accounts
 LoginStatus = "Login Failed with error " & _

Err.Description
 Else
 LoginStatus = "Login Succeeded for user " & _

ConnectionStr.Username
 tAccounts = GetComplexAccountList(AccountManager)
 End If
 Return tAccounts
End Function
NOTE: in the sample code you will find the functions and code for GetComplexAccountList and pSLXLogin. See Section Below.
· The VB.NET Client now can see the contents of the complex data type by simply following the steps below, for simplicity we are displaying the results in a message box.

· In the Solution Explorer, right-click the SLXWebServicesClient project and select Set as StartUp Project
· Expand SLXWebServicesClient | Web References | localhost in the Solution Explorer.
· Right-click the localhost node in the Web References directory and select Update Web Reference. This will update the SLXWebServicesClient application to make use of the SLXWebServices’s new functionality and will update the proxy class to include the new web service function you created (Complexmethod)
· To view the design surface of the form click Form1.vb in Solution Explorer.
· Drag and drop a second Button control on to the form from the Toolbox
· To switch to the event handler function for the Buttonn_Click event double-click the Button control. Enter the following code:
 'Use the Web Service that your Web server provides.
 Dim sErrorStr As String, iCtr As Integer, sName As String
 Dim AccountsList() As localhost.Accounts
 Dim ConnProperties As New localhost.ConnectionProperties

 Dim ws As New localhost.Service1, sAccountName As String
 With ConnProperties
.SLXConnectionAlias = "SalesLogix_Eval"
.SLXServerName = "LOCALHOST"
.UserName = "Admin"
.Password = ""
 End With
 'get our account list with is a complex data type array
 AccountsList = ws.SLXGetComplexAccountList(ConnProperties, _

 "Administrator", sErrorStr)
 'Now show the results
 For iCtr = 0 To UBound(AccountsList)

If Len(AccountsList(iCtr).AccountName) > 0 Then

If Len(sAccountName) > 0 Then

sAccountName = sAccountName & vbCrLf & _

 AccountsList(iCtr).AccountName

Else

sAccountName = AccountsList(iCtr).AccountName

End If

End If
 Next
 If Len(sAccountName) > 0 Then

MsgBox(sAccountName)
 Else

MsgBox("No names found!")
 End If

· To compile and run your application press CTRL+F5. To test the call from the client to the Web Service click Buttonn.
· Close the Run Form of application.
Asynchronous Web Service Call
Calling a Web Service involves making a call over a network, which could potentially be delayed by factors beyond your control (i.e. heavy network traffic). In many cases, you may wish to initiate a call to a Web Service and then continue to execute your application while waiting for the Web Service to return. Calling the Web Service asynchronously can do this. In this section of the lab, you will modify the SLXWebServicesClient application to call the SLXWebServices Web Service asynchronously.

· To simulate a delay in the Web Service processing time, you can insert a call to System.Threading.Thread.Sleep in SimpleMethod implementation.

· Open the code for SLXService.asmx (right-click and select View Code) in the SLXWebServicesDemo project and add the SimpleMethod() function as shown here:
<WebMethod()> _

Public Function SimpleMethod(ByVal name As String) As String

 System.Threading.Thread.Sleep(5000)

 Return "Hello " + name + "!"

End Function
· Right-click the SLXWebServicesDemo node and select rebuild or from the menu select Build -> Rebuild Solution
· In the Solution Explorer , right-click the SLXWebServicesClient project and select Set as StartUp Project
· Refresh the localhost() thread, right click on localhost() and select Update Web Reference
· To view the design surface of the form double-click form1 (i.e. form1.vb) in the Solution Explorer.
· Drag and drop another Button control on to the form from the Toolbox
· To switch to the event handler function for the Buttonn_Click event double-click the Button control. Enter the following code:
 Dim ws As New localhost.WebService
 ws.BeginSimpleMethod(InputBox("Enter Your Name", _

 "Name to be used in call"), New AsyncCallback(_

 AddressOf SimpleFinished), ws)
· Note that when you call the Web Service, you specify a callback method named SimpleFinished(). This is the method, which will be called when the Web Service has finished processing.

· Enter the following code to create the SimpleFinished() callback method. This method will be called once the WebService method SimpleMethod has completed the time delay in this instance 5 secs.
Public Sub SimpleFinished(ByVal state As IAsyncResult)

 Dim o As localhost.SLXWebService = state.AsyncState

 MessageBox.Show(o.EndSimpleMethod(state))

End Sub
· To compile the SLXWebServicesClient application press CTRL+F5
· This will make an asynchronous call when you click Buttonn.Try moving Form1 window around the desktop. You can still do so. The application’s user interface is still responsive because application code continues to execute while the Web Service is processing.
· To make a synchronous call click Buttonn. Recall that the code behind Buttonn makes a synchronous call to the Web Service. Try moving Form1 window around the desktop. It is impossible to do so until the dialog box appears.
 Dim ws As New localhost.WebService
 MsgBox(ws.SimpleMethod(InputBox("Enter Your Name", _

 "Name to be used in call")))
· Calling Web Services asynchronously is a valuable technique for increasing application performance and creating a better experience for the user.
View Accounts Example

To view accounts we have used the web service to return a DataSet and then we have bound that DataSet to a DataGrid. We have used the SLX Account SECCODEID (this is the team owner from SECCODE i.e. who is allowed to see this account) to demonstrate the power of web services we return a list of users from the USERINFO table and the from there a user selects a USER and a list of Account Managers will be displayed and from that list we use the SECCODEID and get a list of all accounts for that manager.

· Open the code for SLXService.asmx (right-click and select View Code) in the SLXWebServices project and add the SLXGetAccountsBySECCODEID() function as shown here:
<WebMethod()> _

Public Function SLXGetAccountsBySECCODEID(_

 ByVal Username As String, _

 ByVal Password As String, _

 ByVal Database As String, _

 ByVal Server As String, _

 ByVal SECCODEID As String) As DataSet

'Create a client-side DataSet to hold the Account table

Dim ds As New DataSet

'Modify this connection string to use your SQL Server

'and log on information.

Dim con As New SqlConnection("Server=" & Server & ";uid=" & _

 Username & ";pwd=" & Password & _

 ";database=" & Database)

Dim daAccounts As New SqlDataAdapter("SELECT * FROM " & _

 "ACCOUNT WHERE SECCODEID = '" & _

 SECCODEID & "'", con)

'Explicitly open the connection to allow explicit closing.

con.Open()

'Fill the DataSet

daAccounts.Fill(ds, "ACCOUNT")

'Explicitly close the connection - do not wait for

'garbage collection.

con.Close()

Return ds
End Function
· Open the code for SLXService.asmx (right-click and select View Code) in the SLXWebServices project and add the SLXGetAccountManagerList() function as shown here:
<WebMethod()> _

Public Function SLXGetAccountManagerList(_

 ByVal ConnectionStr As ConnectionProperties, _

 ByRef LoginStatus As String, ByRef AccountManagers() _

 As USERINFO) As Boolean

Dim tUserInfo() As USERINFO

'Modify this connection string to use your SQL Server

'and log on information.
 If Not pSLXLogin(_

ConnectionStr.SLXServerName,ConnectionStr.SLXConnectionAlias, _

 ConnectionStr.Username, ConnectionStr.Password) Then
 SLXGetAccountManagerList = False
 LoginStatus = "Login Failed with error " & _

Err.Description
 Else

 LoginStatus = "Login Succeeded for user " & _

ConnectionStr.Username
 AccountManagers = GetAccountManagerList()
 SLXGetAccountManagerList = True
 End If
End Function
NOTE: in the sample code you will find the functions and code for GetAccountManagerList and pSLXLogin. See Code Snippets Section Below.
· At the top of the code make a reference to the SQL Client by adding Imports System.Data.SqlClient directly underneath Imports System.Web.Services
· We must Also Add two new Structures at the top of SLXWebServicesDemo under the Imports that where added in the previous step

Public Structure USERINFO

 Dim FirstName As String

 Dim LastName As String

 Dim USERID As String

End Structure

Public Structure ACCOUNT

 Dim AccountID As String

 Dim AccountName As String

 Dim SECCODEID As String

End Structure
· Right-click the SLXWebServicesDemo node and select rebuild or from the menu select Build -> Rebuild Solution
· In the Solution Explorer , right-click the SLXWebServicesClient project and select Set as StartUp Project
· Refresh the localhost() thread, right click on localhost() and select Update Web Reference
· To view the design surface of the form double-click ViewAccounts (i.e. viewaccounts.vb) in the Solution Explorer. If one does not exist that create a new form called ViewAccounts, this can be done by Selecting Project -> Add Windows Form and call the form ViewAccounts
· To be able to show the ViewAccounts form you must add a button on the form1 you created earlier and enter the following code behind the click event of the button added

'Declare a variable to hold the form in.

Dim fViewAcc As New ViewAccounts

'Show the form

fViewAcc.ShowDialog(Me)

'As the window is non-modal then clean up the reference
fViewAcc = Nothing
· Open the new Form ViewAccounts and add the following controls

· Drag and drop a COMBOBOX control on to the form from the Toolbox and name it cboAccountManager
· Drag and drop another COMBOBOX control on to the form from the Toolbox and name it cboAccount
· Drag and drop a DATAGRID control on to the form from the Toolbox and name it dgAccounts
· Here is a sample design
[image: image2.png]
· Now we need to put some code behind all the buttons so that the View becomes functional.

· First we must add to private module level variables

 Private tUserInfo() As localhost.USERINFO

 Private AccountsList() As localhost.Accounts

· Now to start populating the combo boxes, first on the load event we need to get a list of USERS from the USERINFO table and we have a webservice call to do this, on any part of the form where there are no controls double click and a code window should open with the form load event ready for the following code to be entered

'Use the Web Service that your Web server provides.

Dim ws As New localhost.WebService

Dim ConnectionStr As New localhost.ConnectionProperties

Dim sErrorStr As String, iCtr As Integer, sName As String

'Invoke the public WebMethod that returns a DataSet.

With ConnectionStr

.Password = ""

.Username = "Admin"

.SLXServerName = "LOCALHOST"

.SLXConnectionAlias = "SalesLogix_Eval"

End With

'call the web service and get a list of account managers and

' populate them into the combo control

If Not ws.SLXGetAccountManagerList(ConnectionStr,sErrorStr, _

 tUserInfo) Then

MsgBox(sErrorStr)

Else

For iCtr = 0 To UBound(tUserInfo)

If Len(Trim(tUserInfo(iCtr).FirstName)) > 0 Then

sName = tUserInfo(iCtr).FirstName & " " & _

 tUserInfo(iCtr).LastName

Else

sName = tUserInfo(iCtr).LastName

End If

Me.cboAccountManager.Items.Add(sName)

Next

End If
· Now we have populated a list of Account Managers, lets make a call to get a list of Accounts for those managers when they select the account name, double click on the combo box Account Manager and the code window for the combo event SelectedIndexChanged will appear, place the following code under this event to get all the accounts

'Use the Web Service that your Web server provides.

Dim ws As New localhost.WebService

Dim ConnectionStr As New localhost.ConnectionProperties

Dim sErrorStr As String, iCtr As Integer, sName As String

'if something has been selected then we can continue

If Me.cboAccountManager.SelectedIndex >= 0 Then

'clear away the existing list

Me.cboAccount.Items.Clear()

'Set up our connection settings.

With ConnectionStr

.Password = ""

.Username = "Admin"

.SLXServerName = "LOCALHOST"

.SLXConnectionAlias = "SalesLogix_Eval"

End With

'get our account list with is a complex data type array

AccountsList = _

ws.SLXGetComplexAccountList(ConnectionStr, _

tUserInfo(Me.cboAccountManager.SelectedIndex).USERID, _

sErrorStr)

'populate the combo box with some meaningful data

For iCtr = 0 To UBound(AccountsList)

If Len(Trim(AccountsList(iCtr).AccountName)) > 0 Then

sName = AccountsList(iCtr).AccountName

Me.cboAccount.Items.Add(sName)

End If

Next

End If
· Now we have populated a list of Accounts, lets make a call to get a list of Account Details for those Accounts when they select the account name, double click on the combo box Account and the code window for the combo event SelectedIndexChanged will appear, place the following code under this event to get all the accounts

'Use the Web Service that your Web server provides.

Dim ws As New localhost.WebService

'if something has been selected then we can continue

If Me.cboAccount.SelectedIndex >= 0 Then

'bind the DataSet returned from the web service to datagrid

'replace the connection settings with your own values

dgAccounts.DataSource = ws.SLXGetAccountsBySECCODEID(_

 "Admin", "", _

 "LOCALHOST", "SALESLOGIX_EVAL", _

AccountsList(Me.cboAccount.SelectedIndex).SECCODEID)

'select the data member to bind to there could be several

dgAccounts.DataMember = "ACCOUNT"

End If

· The grid can be further extended by putting the relationships into the grid and this would be achieved by creating two DataSets, one for returning a list of Account Managers and another returning a list of Accounts, and then using the dataset relationship manager to join the tables together like

ds.Relations.Add(“AccountOrd”, ds.Tables!AccountManager.Columns!SECCODEID, _

ds.Tables!Account.Columns!SECCODEID)

ds.Relations(0).Nested = True
Section 5

Adding Contacts via Web Service

In this section we will expand our Web Service example to work with SalesLogix Contacts.
Add Contact Example
This sample calls the web service to add a new contact with an address if required, this is a very simple exercise and can easily be extended to include field validation and checking of data input. For linking the Contact to a SECCODEID we have used the same functiuonality in the previous example and allow the user to select the Account from a list, everything else is held in textbox field on a form. The data is submitted to the web service using a complex data type called Contact which holds all the key values that we need to add a contact.
Add a New Class to the Web Service Project
· Select the SLXWebServicesDemo node in the Solution Explorer. To create a new class right-click the SLXWebServicesDemo node and select Add | Add Class menu command
· Enter “Contact.vb” in the Name field

· Click Open
· Declare the variables that will be needed to create a contact & address.
Public Class Contact

 Public LastName As String

 Public FirstName As String

 Public WorkPhone As String
 Public HomePhone As String
 Public Fax As String
 Public Mobile As String
 Public email As String
 Public SECCODEID As String
 Public AccountID As String
 Public AccountManagerName As String
 Public Account As String
 'address part
 Public Address1 As String
 Public Address2 As String
 Public Address3 As String
 Public Address4 As String
 Public City As String
 Public State As String
 Public PostCode As String
 Public County As String
 Public Country As String
End Class
· Open the code for SLXWebServicesDemo.asmx (right-click and select View Code) in the SLXWebServices project and add the SLXAddContact() function as shown here:
<WebMethod()> _

Public Function SLXAddContact(

 ByVal ConnectionStr As ConnectionProperties, _

 ByVal myContact As Contact,

 ByRef LoginStatus As String) As Boolean

Dim SQL As String, SLX_ID As String, SLX_ID2 As String

Dim USER_ID As String, sNowDateTime

'gets the ISO date

sNowDateTime = ISODateTimeString(Now)

'make the connection to the SLX Database with the SLX provider

If Not SLXLogin(ConnectionStr.SLXServerName, _

 ConnectionStr.SLXConnectionAlias, _

 ConnectionStr.Username, _

 ConnectionStr.Password) Then

LoginStatus = "Login Failed with error " & _

Err.Description

SLXAddContact = False

 Else

LoginStatus = "Login Succeeded for user " & _

ConnectionStr.Username

SLX_ID = GenerateSLXID("ACCOUNT")

SLX_ID2 = GenerateSLXID("ADDRESS")

USER_ID = GetUserID("Administrator")

SQL = "INSERT INTO CONTACT(CONTACTID, ADDRESSID, " & _

 "SHIPPING_ID, TYPE, ACCOUNT," & _

 "ACCOUNTID, ISPRIMARY, LASTNAME, " & _

 "FIRSTNAME, WORKPHONE, HOMEPHONE, FAX, MOBILE," & _

 "EMAIL, SECCODEID, CREATEDATE, CREATEUSER," & _

 "MODIFYDATE, MODIFYUSER) VALUES ("

With myContact

SQL = SQL & "'" & SLX_ID & "','" & SLX_ID2 & _

 "','" & SLX_ID2 & "','Customer','" & _

 .Account & _

 "','" & .AccountID & "','T','" & .LastName & _

 "','" & .FirstName & "','" & .WorkPhone & _

 "','" & .HomePhone & "','" & .Fax & "','" & _

 .Mobile & "','" & .email & "','" & _

.SECCODEID & "','" & sNowDateTime & "','" & _

USER_ID & _

"','" & sNowDateTime & "','" & USER_ID & "'," & _

GetUserID(.AccountManagerName) & "'"

End With

SQL = SQL & ")"

adoConnection.Execute(SQL)

If Err.Number <> 0 Then

LoginStatus = "Add Failed with error " & _

Err.Description & vbCrLf & SQL

SLXAddContact = False

Else

SQL = "INSERT INTO ADDRESS (ADDRESSID,ENTITYID," & _

 "TYPE, ISPRIMARY, ISMAILING, SALUTATION," & _

 "CREATEDATE,CREATEUSER, MODIFYDATE, " & _

 "MODIFYUSER,ADDRESS1, ADDRESS2, ADDRESS3," & _

 "ADDRESS4, CITY,"& _

 "COUNTY, POSTALCODE, COUNTRY) VALUES ("

With myContact

SQL = SQL & "'" & SLX_ID2 & "','" & SLX_ID & _

 "','Customer','T','T','" & .FirstName & _

 "','" & sNowDateTime & "','" & USER_ID & _

 "','" & sNowDateTime & "','" & _

 USER_ID & "','" & .Address1 & "','" & _

 .Address2 & "','" & .Address3 & "','" & _

 .Address4 & "','" & .City & "','" & _
 .State & "','" & .PostCode & "','" & _

 .Country & "'"

End With

SQL = SQL & ")"

adoConnection.Execute(SQL)

If Err.Number <> 0 Then

LoginStatus = "Address Failed with error" & _

 Err.Description & vbCrLf & SQL

SLXAddContact = False

Else

SLXAddContact = True

End If

End If

End If
End Function

NOTE: in the sample code you will find the functions and code for GenerateSLXID, GetUserID, ISODateTimeStamp and pSLXLogin. See Code Snippets Section Below.
· We must Also Add two new Structures at the top of SLXWebServicesDemo under the Imports Section, if you have completed ViewAccounts this is not needed as it was added as part of that process.

Public Structure USERINFO

 Dim FirstName As String

 Dim LastName As String

 Dim USERID As String

End Structure

Public Structure ACCOUNT

 Dim AccountID As String

 Dim AccountName As String

 Dim SECCODEID As String

End Structure
· Right-click the SLXWebServicesDemo node and select rebuild or from the menu select Build -> Rebuild Solution
· In the Solution Explorer , right-click the SLXWebServicesClient project and select Set as StartUp Project
· Refresh the localhost() thread, right click on localhost() and select Update Web Reference
· To view the design surface of the form double-click AddContact (i.e. ViewContact.vb) in the Solution Explorer. If one does not exist that create a new form called AddContact. A new form can be created called AddContact, this can be done by Selecting Project -> Add Windows Form and call the form AddContact.vb
· First we must add to private module level variables
 Private tUserInfo() As localhost.USERINFO

 Private AccountsList() As localhost.Accounts

· Now to start populating the combo boxes, first on the load event we need to get a list of USERS from the USERINFO table and we have a webservice call to do this, on any part of the form where there are no controls double click and a code window should open with the form load event ready for the following code to be entered

'Use the Web Service that your Web server provides.

Dim ws As New localhost.WebService

Dim ConnectionStr As New localhost.ConnectionProperties

Dim sErrorStr As String, iCtr As Integer, sName As String

'Invoke the public WebMethod that returns a DataSet.

With ConnectionStr

.Password = ""

.Username = "Admin"

.SLXServerName = "LOCALHOST"

.SLXConnectionAlias = "SalesLogix_Eval"

End With

'call the web service and get a list of account managers and

' populate them into the combo control

If Not ws.SLXGetAccountManagerList(ConnectionStr,sErrorStr, _

 tUserInfo) Then

MsgBox(sErrorStr)

Else

For iCtr = 0 To UBound(tUserInfo)

If Len(Trim(tUserInfo(iCtr).FirstName)) > 0 Then

sName = tUserInfo(iCtr).FirstName & " " & _

 tUserInfo(iCtr).LastName

Else

sName = tUserInfo(iCtr).LastName

End If

Me.cboAccountManager.Items.Add(sName)

Next

End If
· Now we have populated a list of Account Managers, lets make a call to get a list of Accounts for those managers when they select the account name, double click on the combo box Account Manager and the code window for the combo event SelectedIndexChanged will appear, place the following code under this event to get all the accounts

'Use the Web Service that your Web server provides.

Dim ws As New localhost.WebService

Dim ConnectionStr As New localhost.ConnectionProperties

Dim sErrorStr As String, iCtr As Integer, sName As String

'if something has been selected then we can continue

If Me.cboAccountManager.SelectedIndex >= 0 Then

'clear away the existing list

Me.cboAccount.Items.Clear()

'Set up our connection settings.

With ConnectionStr

.Password = ""

.Username = "Admin"

.SLXServerName = "LOCALHOST"

.SLXConnectionAlias = "SalesLogix_Eval"

End With

'get our account list with is a complex data type array

AccountsList = _

ws.SLXGetComplexAccountList(ConnectionStr, _

tUserInfo(Me.cboAccountManager.SelectedIndex).USERID, _

sErrorStr)

'populate the combo box with some meaningful data

For iCtr = 0 To UBound(AccountsList)

If Len(Trim(AccountsList(iCtr).AccountName)) > 0 Then

sName = AccountsList(iCtr).AccountName

Me.cboAccount.Items.Add(sName)

End If

Next

End If
NOTE: This step is identical to the ViewAccounts and the same COMBO BOXES and Code can be copied from the ViewAccounts.vb form to this one.
· To be able to show the AddContact form you must add a button on the form1 you created earlier and enter the following code behind the click event of the button added

'Declare a variable to hold the form in.

Dim fAddContact As New AddContact

'Show the form

fAddContact.ShowDialog(Me)

'As the window is non-modal then clean up the reference
fAddContact = Nothing
· Open the Form and add the following controls

· Add some fields for holding the Contact and Address information, please see example below on how to do it

[image: image3.emf]

· Behind the Add Button we need to put some code to call the web service and add the following code

'Use the Web Service that your Web server provides.

Dim ws As New localhost.Service1

Dim ConnectionStr As New localhost.ConnectionProperties

Dim sErrorStr As String, myContact As New localhost.Contact

'Set the connection parameters.

With ConnectionStr

.Password = ""

.Username = "admin"

.SLXServerName = "LOCALHOST"

.SLXConnectionAlias = "SalesLogix_Eval"

End With

'populate the complex data type with the textbox values

With myContact
 .Account = AccountsList(Me.cboAccount.SelectedIndex).AccountName
 .AccountID = AccountsList(Me.cboAccount.SelectedIndex).AccountID
 .SECCODEID = AccountsList(Me.cboAccount.SelectedIndex).SECCODEID

 .AccountManagerName = cboAccountManager.Text
 .email = txtEmail.Text
 .Fax = txtFax.Text
 .FirstName = txtFirstName.Text
 .HomePhone = txtHomePhone.Text
 .LastName = txtLastName.Text
 .Mobile = txtMobile.Text
 .WorkPhone = txtWorkPhone.Text
 'now the address part
 .Address1 = txtAddress1.Text
 .Address2 = txtAddress2.Text
 .Address3 = txtAddress3.Text
 .Address4 = txtAddress4.Text
 .City = txtCity.Text
.State = txtState.Text
 .PostCode = txtPostcode.Text
 .Country = txtCountry.Text

End With

If ws.SLXAddContact(ConnectionStr, myContact, sErrorStr) Then

MsgBox("Successfully added contact")

Else

MsgBox("Failed to add contact with error : " & sErrorStr)

End If
· Now press CTRL+F5 to compile and run the application, fill-in the fields and test adding a new contact.
Section 6

Advanced Topic - UDDI

The Universal Description, Discovery, and Integration (UDDI) specification defines a SOAP-based Web service for locating Web services and programmable resources on a network. UDDI provides a foundation for developers and administrators to readily share information about internal services across the enterprise and public services on the Internet.

Windows Server 2003 includes UDDI Services, enabling companies to run their own private UDDI service for intranet or extranet use. UDDI Services helps companies organize and catalog programmatic resources. As a core piece of Web services infrastructure in Windows Server 2003, UDDI Services makes it easy to discover, share, and re-use Web services and other programmable resources. With UDDI Services, companies can build and deploy smarter, more reliable applications.

Microsoft also hosts a node of the UDDI Business Registry (UBR) as well as a UDDI test node. Offered at no cost, the UBR Node is a public UDDI registry where one can publish and inquire about Web services available on the internet. The Microsoft UBR node replicates with other UBR operator nodes. The Microsoft Test node is a fully functional environment where you can safely develop and test your software without affecting other UDDI users.

As part of the sample we have attached the sample Microsoft provides as it’s demo, this is very useful if you want to allow your customers to see what services are available on your web services.
Section 7

Using ASP.NET With SalesLogix

Using ASP.NET is very similar to using VB.NET in Design and follows a lot of the same rules. In this section, we’ll look at an ASP.NET example.

· To perform calls to the SLXWebServicesDemo Web Service add a client to the current solution. This client uses SOAP to access the Web Service.

· To add a new project to the current solution in Visual Studio .NET, select File | Add Project | New Project menu command

· In the Project Types pane select VB Application
· In the Templates List select ASP.NET Web Application
· Enter “WebApplication1” in the Name field.

· To create the project click OK
· To identify WebApplication1 as the primary/StartUp project in the solution, in the Solution Explorer, right-click the WebApplication1 project and select Set as StartUp Project.

· To create a reference to the Web Service, select Project | Add Web Reference menu command.

· Add Web Reference Dialogue Box appears.
[image: image4.png]
· Enter the URL of the Web Service you created. The URL is: http://localhost/SLXWebServicesDemo/Service1.asmx?wsdl

· Click Go
· Enter a name SLXWebService, this will be the name we refer to it in the code
· To refer to this web service click Add Reference

· The WebApplication1 project will now have a new folder called Web References. This will contain a SLXWebService node and a few files. These files contain description of the SLXWebServices, including a proxy class, which will allow you to access the service. This proxy class will handle all the low-level SOAP interactions, which occur between your application and the SLXWebService.
Building a new Web Form to Test the Web Service

· Open the default form by double-clicking WebForm1.aspx in the Solution Explorer. This opens the form design surface. This should be open by default
· Add 4 labels, 4 text boxes to hold the login details and one listbox, see image below

[image: image5.emf]

· For the listbox to be visible to us for coding we must set it to run at server to do this simpley select the listbox right mouse click and select ‘Run At Server Control’ then access the properties of the control and give it an ID of lstUsers
Accessing the Web Service

· Open the default form by double-clicking WebForm1.aspx in the Solution Explorer. This opens the form design surface.
· Open Toolbox, to view the Toolbox select View |Toolbox menu command.

· Drag and drop a Button control on to the form from the Toolbox.

· To switch to the event handler function for the Button1_Click event first Right mouse click and set to ‘Run At Server Control’ then you can double-click Button control.

· Create an instance of your proxy class (SLXWebService.Service1) and call the SLXGetAccountManagerList() function, passing a valid connection argument settings. Display the output of this function call in the ListBox. The Buttonn_Click() function should now look like:

Dim ws As New SLXWebService.WebService

Dim con As New SLXWebService.ConnectionProperties

Dim useri() As SLXWebService.USERINFO

Dim lStatus As String, iCtr As Integer

Me.lstUsers.Items.Clear()

With con

.Password = Me.txtPassword.Text

.Username = Me.txtUserName.Text

.SLXServerName = Me.txtSLXServerName.Text

.SLXConnectionAlias = Me.txtSLXConAlias.Text

End With

If ws.SLXGetAccountManagerList(con, lStatus, useri) Then

For iCtr = 0 To UBound(useri)

 Me.lstUsers.Items.Add(useri(iCtr).FirstName & " " & _

 useri(iCtr).LastName)

Next

Else

Me.lstUsers.Items.Add("Error: " & lStatus)

End If
· To compile and run your application press CTRL+F5. To test the call from the client to the Web Service click Button1.

· Close the client Run Form.
Section 8

Functions used in the samples

The following functions are required by the project and are included here for reference and so that you can paste them into your project.

The following code snippets use some module level variables that need to be declared under the Class declaration. These variables are used to persist the data connection between the original web service call and the call to the functions below. Please add the following under Inherits System.Web.Services.WebService

CODE TO BE ADDED AFTER THE LINE ABOVE

 Private LoginError As String

 Private adoConnection As New ADODB.Connection

SLXLogin

Private Function pSLXLogin(ByVal SLXServerName As String, _
 ByVal SLXConnectionAlias As String, _
 ByVal UserName As String, _
 ByVal Password As String)

Dim ConnectionStr As String

 adoConnection = New ADODB.Connection

 ConnectionStr = "Provider=SLXNetwork.1; Data Source=" & _

SLXConnectionAlias & ";User ID=" & UserName & _

";" & "Password=" & Password & "; " & _

"Extended Properties=SLX SERVER=" & SLXServerName &_

";Address=localhost;TYPE=ODBC;PORT=1706;"

On Error GoTo ErrRoute

 Call adoConnection.Open(ConnectionStr)

adoConnection.CursorLocation = ADODB.CursorLocationEnum.adUseClient

 pSLXLogin = True

 Exit Function

ErrRoute:

 pSLXLogin = False

 LoginError = Err.Description

End Function

GetAccountManagerList

Private Function GetAccountManagerList() As USERINFO()

Dim rs As New ADODB.Recordset, SQL As String

Dim iCtr As Integer, tUserInfo() As USERINFO

SQL = "SELECT FIRSTNAME,LASTNAME,USERID FROM USERINFO"

' Version 6.2

adoConnection.CursorLocation = ADODB.CursorLocationEnum.adUseClient

 rs.LockType = ADODB.LockTypeEnum.adLockOptimistic

'------------
 rs.Open(SQL, adoConnection)

 iCtr = 0

 ReDim tUserInfo(iCtr)

 If Not rs.EOF And Not rs.BOF Then

While Not rs.EOF

ReDim Preserve tUserInfo(iCtr)

 tUserInfo(iCtr).FirstName = rs.Fields("FIRSTNAME").Value & ""
 tUserInfo(iCtr).LastName = rs.Fields("LASTNAME").Value & ""
 tUserInfo(iCtr).USERID = rs.Fields("USERID").Value & ""
 iCtr = iCtr + 1

 rs.MoveNext()

 End While

End If

 GetAccountManagerList = tUserInfo

 End Function
GetComplexAccountList

Private Function GetComplexAccountList(_
 ByVal AccountManager As String) As Accounts()

Dim rs As New ADODB.Recordset, SQL As String, iCtr As Integer
Dim tAccounts() As Accounts

SQL = "SELECT ACCOUNTID, ACCOUNT,SECCODEID FROM ACCOUNT WHERE"

 "STATUS = 'Active' AND ACCOUNTMANAGERID = '" &

 AccountManager & "'"

' Version 6.2

adoConnection.CursorLocation = ADODB.CursorLocationEnum.adUseClient

rs.LockType = ADODB.LockTypeEnum.adLockOptimistic

'------------
 iCtr = 0

 ReDim tAccounts(iCtr)

 If Not rs.EOF And Not rs.BOF Then

 While Not rs.EOF

 ReDim Preserve tAccounts(iCtr)

 tAccounts(iCtr) = New Accounts

 With tAccounts(iCtr)

 .AccountID = rs.Fields("ACCOUNTID").Value & ""

 .AccountName = rs.Fields("ACCOUNT").Value & ""

 .SECCODEID = rs.Fields("SECCODEID").Value & ""

 End With

 iCtr = iCtr + 1

 rs.MoveNext()

 End While

 Else

 ReDim tAccounts(0)

 tAccounts(0) = New Accounts

 End If

 Return tAccounts

End Function

GenerateSLXID

 Private Function GenerateSLXID(_

ByVal TableName As String) As String

 Dim rs As New ADODB.Recordset
 ' Version 6.2

adoConnection.CursorLocation = ADODB.CursorLocationEnum.adUseClient

 rs.LockType = ADODB.LockTypeEnum.adLockOptimistic

 '------------
 rs.Open("slx_DBIDs('" & TableName & "',1)", adoConnection)

 GenerateSLXID = rs.Fields(0).Value

 rs.Close()

 End Function
ISODateTimeString

Private Function ISODateTimeString(ByRef oDate)

 On Error Resume Next

 Dim sYear

 Dim sMonth

 Dim sDay

 Dim sHour

 Dim sMinute

 Dim sSecond

 ISODateTimeString = ""

 'zero pad strings as appropriate

 sYear = CStr(DatePart("yyyy", oDate))

 sMonth = Right("0" & CStr(DatePart("m", oDate)), 2)

 sDay = Right("0" & CStr(DatePart("d", oDate)), 2)

 sHour = Right("0" & CStr(DatePart("h", oDate)), 2)

 sMinute = Right("0" & CStr(DatePart("n", oDate)), 2)

 sSecond = Right("0" & CStr(DatePart("s", oDate)), 2)

 ISODateTimeString = sYear & "-" & sMonth & "-" & sDay & _

 " " & _

 sHour & ":" & sMinute & ":" & sSecond

On Error GoTo 0

End Function

GetUserID

Private Function GetUserID(ByVal Name As String) As String

 Dim rs As New ADODB.Recordset, SQL As String, _

 sUserID As String

SQL = "SELECT USERID FROM USERINFO WHERE USERNAME = '" & Name & "'"

 ' Version 6.2

adoConnection.CursorLocation = ADODB.CursorLocationEnum.adUseClient

 rs.LockType = ADODB.LockTypeEnum.adLockOptimistic

 '------------
 rs.Open(SQL, adoConnection)
 If Not rs.EOF And Not rs.BOF Then

 sUserID = rs.Fields(0).Value & ""

 End If

 rs.Close()

 Return sUserID
 End Function
Section 9

Toolkit Example Code Reference

This section serves as a reference to the example code in the toolkit.

SLXWebServiceDemo.zip – extensive code written in VB .NET 2003 for a Web Service that has the following methods exposed:

· SLXLoginTest – uses standard login parameters

· SLXGetAccountManagerList – returns a list of account managers

· SLXGetAccountList – returns a list of accounts for an account manager
· SLXGetComplexAccountList – returns a list of accounts for an account manager
· SLXGetAccountsBySECCODEID – returns a SQL Server data set that can be bound to a data grid in a client
· SLXGetRelatedAccountsByAccountManager – returns a hierarchal data set that links two tables together that can be used to bind to a data grid
· SLXAddContact – pass in a complex data type Contact and a new contact will be added to the SLX database.
· SimpleMethod – this method has a simple method that uses the sleep command so we can test the asychronise option
WebServiceClient.zip – contains the VB .NET client code that uses the above methods, there are three main forms:
· Main – the initial start-up screen, that will direct you to other parts of the application
· Login – allows you to enter in the connection properties which are stored locally in the registry

· Add Contact – has the required fields to add a new contact to the database by making a call to the web service

· ViewAccounts – a screen that uses calls to the web services to populate data grids and list boxes.

Web Services - Consume a Web Service.zip – contains the VB .NET client code that demonstrates how to the Microsoft UDDI control.
WebApplication1.zip – contains a small application that uses ASP.NET to access the web client
PAGE
33

